
Achieving a successful SOA implementation
Huibert Aalbers 

Senior Certified Software IT Architect



IT Insight podcast

• This podcast belongs to the IT Insight series 
You can subscribe to the podcast through iTunes. 

• Additional material such as presentations in PDF format or white 
papers mentioned in the podcast can be downloaded from the IT 
insight section of my site at http://www.huibert-aalbers.com 

• You can send questions or suggestions regarding this podcast to my 
personal email, huibert_aalbers@mac.com

mailto:huibert_aalbers@mac.com


Three phase plan to a successful 
implementation

• No matter wether you are just starting dabbling with services or have solid 
experience developing distributed components, a successful SOA 
implementation requires every organization to go through three consecutive 
phases 

• Planning 

• Enterprise Application Integration 

• Business Process Management



Phase 1 - Planning
• Before starting to create and connect services you should spend some time planning. 

In particular, it helps to answer the following questions 

• What is a service? 

• What services are needed? 

• Which services need to be developed? 

• How to create new services? 

• Which communication protocol should be used to invoke services? 

• How should services be managed? 

• Vocabulary normalization



What is a service?
• A service represents a clearly defined business task that can be remotely 

invoked using standard communication protocols 

• A function such as SRQT(x) is not a service 

• The function LogErr(“Unexpected error”) isn’t a service either 

• A service is defined by an interface (WSDL) that is totally independent of 
service implementation



What services are needed?
• IT should not answer this question. Instead, the best way to find out what 

services are needed is to ask business users to model their business 
processes



Which services need to be developed?

• For each identified service you need to ask yourself if it needs to be created 
from scratch or if it is possible to reuse functionality provided by a legacy 
system, exposed as a service 

• There are many ways to expose the functionality of legacy systems as 
web services 

• Message queues 

• Adapters 

• Direct database access, etc.



How should new new services be created?
• Currently most programming languages offer support for web services 

• However, it is easy to discard most of them for various reasons (obsolete, 
proprietary, complex, etc.) 

• From my point of view, Java is he best choice to produce enterprise-ready 
services (in particular if high-availability is required) 

• Services are programs, therefore developers need to use proven methodologies to 
develop them 

• One of the main advantages of working with services is that these components can 
easily be unit-tested. Consider testing both functionality and scalability



Which communication protocol should be used?

• A highly distributed system needs to be fault-resistant. The best way to 
achieve this goal is to adopt a loosely- coupled architecture 

• This can be achieved by connecting asynchronously components using 
message queues 

• However, in some cases, for example online queries, it may not be possible 
to use asynchronous communications, and then HTTP becomes an 
alternative 

• It is important to consider that it is very easy to expose a Java component (for 
example an EJB or a Java Bean) as a service that can be invoked through 
various transport protocols



How should services be managed?
• With few services, it is theoretically possible for the developers to manage the WSDL files 

themselves 

• When working with tens of services, it becomes necessary to have a centralized repository 
(UDDI) that stores and publishes information (WSDL) about the existing services 

• If a company uses hundreds or thousands of services a more advanced directory is required in 
order to know 

• Who is responsible for a particular service (QoS)? 

• Who maintains a particular service? 

• Who is responsible for data quality? 

• Which processes will be impacted if a service fails?



Vocabulary Normalization

• When trying to interconnect tens of different systems, it is usual to find out 
that all of them do not share a single dictionary. The same object, for 
example “Customer” or “Address”, can be represented in different ways 
within different systems 

• It is important that during process-modeling, business objects get 
normalized, in order to simplify system integration and reduce the need for 
costly transformations when connecting multiple systems



Phase II - Enterprise Application Integration 
(EAI)

• This phase involves connecting services through an Enterprise Service Bus 
(ESB) and therefore you need to consider 

• Message transformation and routing 

• Security 

• Monitoring 

• Quality of service



Message transformation and routing

• These functions are provided by the Enterprise Service Bus (ESB), which is 
really a secure communication infrastructure that allows to connect all the 
services to the processes that run the organization 

• The ESB is built by connecting message queues and brokers that transform 
and route messages based on their content using standards such as XSLT 
and XPath



Security
• Security is extremely important within the web services context 

• You can either encrypt the messages or the communication channel 

• It is easier to encrypt the whole communication channel 

• By encrypting the message or parts of it using WS-Security, developers get 
much more flexibility 

• Security should be centralized 

• Use an LDAP directory 

• Always remind that security can seriously impact an application performance



Monitoring
• Any SOA architecture is as solid as its weakest link 

• One of the main missions of architects is to plan from the beginning how the 
final system will operate and will be monitored in order to insure a quiet and 
trouble-less operation



Quality of service (QoS)
• Besides being able to quickly detect problems it is important to ensure those problems 

will not disrupt the business operations 

• The best strategy is to have each component in high- availability 

• Portal 

• Process engine 

• Application Servers (used to run the services) 

• Database 

• Message queues, brokers, etc. 

• Quality of Service also covers response times



Phase III - Business Process Management 
(BPM)

• After implementing the ESB 

• Separating the presentation layer from the business logic layer 

• Developing process-based applications 

• Business Process Monitoring



Separating the presentation layer from the 
Business Logic layer

• Under an EAI design, applications communicate between each other but 
each one maintains its own user interface 

• After moving to the next phase, those user interfaces are usually deprecated, 
instead all user-interactions are consolidated into a single web-based portal 

• This allows to put the presentation layer on the portal, which facilitates 
single sign-on, run the business components on the application server 
layer and finally move all the processes to the process engine.This allows 
for development simplification and separation of concerns



Developing process-based applications

• After proper planning and developing new services or exposing as such 
existing functionality, it becomes possible to create new applications by 
simply connecting services to business processes 

• Making changes to a business process becomes trivial, since there is no 
need to modify any code



Business Process Monitoring
• When the processes are run, it is possibles to monitor and analyze them in 

order to find ways to improve the business 

• Using BPM the upper management can see in real-time, through the 
situation of the business



Conclusions
• Implementing SOA is a long and complex process that cannot be achieved quickly 

• When designing a highly distributed architecture it is necessary to take into account 
many factors 

• Security 

• Performance 

• Monitoring 

• Governance 

• Despite the fact that SOA based systems are complex to operate, the many advantages 
brought by this new architectural pattern highly overcome the disadvantages



Gracias

For more information, please contact me at 
huibert_aalbers@mac.com

mailto:huibert_aalbers@mac.com

